

NCC-003-1152002

Seat No.

14

M. Sc. (Electronics) (Sem. II) (CBCS) Examination

April / **May** - 2017

Advance Electromagnetics: Paper-VI

[Department of Electronics]

Faculty Code: 003 Subject Code: 1152002

Time: Hours] [Total Marks: 70

- 1 Answer any seven from the following:
 - (1) Prove that the wave equations in free space are given by

$$\nabla^2 E = \mu_0 \in_0 \ddot{E}$$

$$\nabla^2 H = \mu_0 \in_0 \ddot{H}$$

- (2) Prove that E and H are perpendicular to each other in EM wave.
- (3) Prove that the wave equations in phasor form are given as

$$\nabla^2 E = \gamma^2 E$$

$$\nabla^2 H = \gamma^2 H$$

Where
$$\gamma = \sqrt{-\omega^2 \mu \in +j\omega\mu\sigma}$$
.

- (4) Prove that $\delta = \frac{1}{\alpha}$ where δ is depth of penetration and α is attenuation constant.
- (5) Briefly write on direction consines of a vector field.

- (6) Prove that $\Gamma_E = \frac{\eta_2 \eta_1}{\eta_2 + \eta_1}$.
- (7) Explain the terms phase velocity and group velocity.
- (8) Show that TEM wave does not exist in hollow waveguides.
- (9) Write four different definitions of propagation constant of transmission line.
- (10) Define an antenna. What is radiation intensity?
- 2 Answer any two from the following:
 - (1) Prove that a uniform plane wave propagating in x-direction 7 has no x-components of E and H, i.e., $E_x = 0$ and $H_x = 0$.
 - (2) Prove that $\frac{E}{H} = 120\pi \Omega$.
 - (3) Prove that for conducting medium

$$\alpha = \omega \sqrt{\frac{\mu \in \left[1 + \frac{\sigma^2}{\omega^2 \in ^2} - 1\right]}}$$

$$\beta = \omega \sqrt{\frac{\mu \in \left[\sqrt{1 + \frac{\sigma^2}{\omega^2 \in ^2}} + 1\right]}$$

- **3** Answer the following:
 - For a normal incidence of EM wave on a perfect conducting 7 surface show that

$$\tilde{E}_R(z,t) = 2E_i \sin \beta z \sin \omega t$$

$$\tilde{H}_R = 2H_i \cos \beta z \cos \omega t$$

7

(2) Assuming oblique incidence of EM wave on perfect conductor 7 prove for the case of parallel polarization that

$$H_T = 2H_i \cos(\beta y \cos\theta) e^{-j\beta x \sin\theta},$$

$$E_{Tx} = 2j\eta\cos\theta H_i\sin\beta_y y e^{-j\beta_x x}$$

$$E_{Ty} = 2\eta \sin \theta H_i \cos \beta_y y e^{-j\beta_x x}$$

OR

- **3** Answer the following:
 - (1) A vessel under sea water requires a minimum signal level of $20\mu V/m$. What is the depth in the sea that can be reached by 4.0 MHz plane wave from an airplane? The wave has an electric field intensity of 100 V/m. The propagation is vertical into the sea. For sea water, $\sigma = 4.0$ mho/m, $\mu_r = 1$, $\epsilon_r = 81$.
 - When a wave of 6 GHz propagates in parallel conducting plates separated by 3 cm, find the phase and group velocity for dominant wave. Find the modes that will propagate through this guide if the separation distance is 6 cm.
- 4 Answer the following:
 - (1) Derive the expressions for the field components H_x, H_y, E_x, E_y for EM wave travelling between two perfectly conducting plates.
 - (2) Obtain the expressions for the field components H_x, H_y, E_x, E_y for EM wave travelling in the rectangular hollow waveguide with perfectly conducting walls.

- 5 Answer any two from the following:
 - (1) Discuss the transmission line with proper equations and show that

$$Z_i = \frac{V_L \cosh \gamma l + Z_0 I_L \sinh \gamma l}{I_L \cosh \gamma l + \left(\frac{V_L}{Z_0}\right) \sinh \gamma l}$$

Point out the special cases of Z_i when load is open or short circuited.

- (2) Write a detailed note on Smith chart with proper derivation 7 of r-circle and x-circle equations.
- (3) Discuss radiation from half-wave dipole antennal with detail 7 mathematical steps and show that

$$P_T = 73.0 \, I_{eff}^2 \, R_r = 73 \, \Omega$$
.

(4) Find the directivity of current element, *Idl*.

7